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On a Self-Adjusting Capability of  Random 
Access  Networks 
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Abstract-We consider  a  distributed  communication  network with 
many  terminals  which  are  distributed in space  and wish to  communi- 
cate with  each  other  using  a  common  radio  channel.  Choosing  the 
transmission  range in such  a  network  involves  the  following  tradeoff: 
a  long  range  enables  messages to reach  their  destinations in a few 
hops,  but  increases the  amount  of  traffic  competing  for the channel  at 
every  point. 

We give  a simple  model  for  the  per-hop  delay in random  access 
networks,  analyze  this  tradeoff, and  give  the  optimal  transmission 
range. When  choosing  this  optimal  range, as  a function  of  specified 
traffic  and  delay  parameters,  networks  demonstrate  an  important 
self-adjusting  capability.  This  capability  to  adjust to traffic  makes 
heavily  loaded networks far  better  than centralized  systems (in which all 
messages  must  reach  one  common  destination). 

Dividing  a  terminal  population  into power  groups can  improve any 
random  access  system,  especially  when  the  traffic is split  between 
groups in an  appropriate  way,  which  we  demonstrate.  But  since  net- 
works  are  hurt by destructive  interference  less  than  centralized  sys- 
tems, i t  is  harder to improve  them. Using power  groups  can  signifi- 
cantly  improve  centralized  systems, but will  lead  to  a  smaller  relative 
improvement in networks.  Decomposing  the  system  into  a hierarchy of 
ALOHA levels,  with  only  a  small  population  contending at the  top 
level,  can improve  centralized  systems  but  does  not  improve  net- 
works. 

C 
I. INTRODUCTION 

ONSIDER  a  large  number  of  terminals,  physically dis- 
tributed  over  a  large  geographic  region. If all  terminals 

wish to  communicate  with  one  destination,  we  shall  call  the 
system  centralized  and  the  common  destination  the  station. 
Assuming  the  communication  resource  available is a  radio 
channel  of  a given bandwidth,  how  should  this  common  chan- 
nel  be  shared  among  the  terminals? If the  terminals  were  co- 
located  in  the  same  place,  the  best  way  to  use  the  channel is t o  
form  a  queue of busy  terminals (i.e., those  having  anything  to 
transmit)  and  to  let  them  use  the  full  bandwidth  available  one 
after  the  other.  Forming  one  queue is much  better  than giving 
each  terminal  a  fraction of the  bandwidth,  and  letting  each 
terminal  queue  its  own  messages [ 71. 

I t  is no trivial  matter  to  have  all  terminals  form  one  queue 
when  the  terminals  are  numerous  and  distributed  over  large 
distances. Of special  interest,  then, is the  ALOHA  approach, 
which  invests no resources  in  coordination  and  control  of 
terminals.  When  using  the  (unslotted)  ALOHA  scheme,  each 
terminal  transmits  whenever  it  has  a  message  ready.  If  more 
than  one  terminal is transmitting  at  the  same  time,  a  con- 
flict will occur  in  the  use of the  radio  channel,  and  we  shall 
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assume  at  first  that  all  messages  involved  in  such  a  collision 
will be  destroyed.  When  the  destruction of its message be- 
comes  known  to  the  terminal  it will, after  a  somewhat  ran- 
domized  delay,  retransmit  the  message. We shall  not  specify 
how  the  failure of its  message  becomes  known  to  the  terminal, 
but  assume  that  this  knowledge is free. 

Schemes  based on the  ALOHA  idea  have  been  extensively 
treated [ 11, [9] ,  [ 121.  ALOHA is obviously  good  when  the 
system is lightly  utilized  and  destructive  interference is not  
very  likely.  When  the  load is heavy,  a  significant  fraction  of 
the  transmissions will fail  as  a  result  of  collisions.  The  waste- 
ful  effect of collisions  can  be  reduced if all  transmissions  are 
of the  same  length [ 51.  This is usually  achieved  by  breaking 
long messages into  packets of a  fixed  maximum  size. We as- 
sume  that  this is always  done  and,  despite  the  fact  that  one 
message  may  result  in  several  packets,  we  assume  that  arrival 
of  separate  packets  into  our  system is independent,  and  that 
the  total  arrival  process is Poisson.  The  wasteful  effect of colli- 
sions  can  be  further  reduced if time is slotted  (where  each  slot 
has  a  duration  which is equal  to  a  packet  transmission  time) 
and if terminals  are  constrained  to  start  transmitting  only  at 
the beginning  of  a  slot.  The  resulting  access  scheme  is  called 
slotted  ALOHA,  and  the  maximum  fraction  of  the  time  slots 
it  can  use  for  successful  transmissions  is  known t o   b e   l l e  [ 161. 

Let  us  choose  the  data  unit so that  the average  length  of  a 
message is equal  to 1. This is simply  a  convenient  normaliza- 
tion,  which  is  equivalent  to  measuring  the  capacity  of  the  com- 
munication  channel  in messages (of  an  average  length)  per 
second,  instead  of  measuring  in  bits  per  second.  The  through- 
put-delay  performance of the  ALOHA  schemes is not  de- 
scribed by a  simple  analytic  expression [ 121.  For  simplicity 
we  shall  use  the  following  ad  hoc  expression  to  describe  the 
performance of the  ALOHA  schemes: 

1 

c - eS 
T =  -. (1) 

Here T is the  average  response  time of the  system, C is the 
capacity  (bandwidth) of the  communication  channel,  and S 
is the  system  throughput  (messages  per  slot). We shall  assume 
that  this  expression  describes  the  optimum  envelope  of  slotted 
ALOHA  and  unslotted  ALOHA  performance  curves.  (For S + 

0 it  describes  unslotted  ALOHA;  for SIC + l / e  it  describes 
slotted  ALOHA.)  Equation  (1) is a  simple  two-parameter 
approximation  that  reproduces  the  known  behavior  when 
S = 0 and  when S/C = l / e .   For  a  similar  three-parameter 
approximation  see [ 101. 

Assume  that  the  throughput S and  the  acceptable  delay T 
are  specified,  and  that we seek  an  access  scheme  that will 
minimize  the  necessary  system  capacity C. For  most  purposes 
it is sufficient  to  specify  the  communication  needs  by  the di- 
mensionless  product S T ,  whose  inverse  we  shall  call  burstiness 
[ 21, [ 61, [ 131. We shall  define  the  quality [ 21 of an  arbitrary 
access  scheme  as  the  inverse  ratio  between  the  capacity  neces- 
sary  when  using  this  scheme  and  the  capacity  necessary  when 
using the best possible  scheme,  in  which  messages  form  one 
queue  and  share  one  channel. 
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Inverting  (1)  we  see  that  the  capacity  necessary  when  using 
ALOHA  is given by C = eS + 1/T. When  messages  arrive  in- 
dependently  and  their  lengths  are  exponentially  distributed, 
the best  scheme  is  the  M/M/l  queue,  where  the  necessary 
capacity  is C = S + 1/T.  The  quality of the  ALOHA  scheme is 
therefore  simply (ST -t l)/(eST + 1). We see that  the  ALOHA 
scheme  has  a  quality of 1  when  the  traffic is  very  bursty 
( S T  l ) ,  i.e., it  then  needs  no  more  capacity  than  the  M/M/1 
scheme,  and  a  quality  l/e  when  the  traffic is very  steady 

In  the centralized  system  described  above,  all  messages  have 
one  common  destination, even though  their  sources  are dis- 
tributed. When the  traffic  to be  carried  is  between  many  ter- 
minal  pairs we  have  a  different  problem,  which  we  shall  call 
the network problem.  .That  is,  in  a  network,  both  the  sources 
of  messages  and  their  destinations  are  distributed. In  describ- 
ing  the  centralized  system we have  implicitly  assumed  that  all 
terminals  can  transmit  with  enough  range to  reach  the  station 
(i.e.,  we  are  not  power  limited),  and  that  transmitting  directly 
to  the  station is the  best  policy. If the  transmission  range  is 
not  enough to span  the  distance  from  source  to  destination, 
the message  will  have t o  be  received  by  some  intermediate 
node  and  relayed  towards  its  destination.  That is,  a  message 
may  need  more  than  one  hop  in  order  to  reach  its  destination. 
The  intermediate  node is often called  a  repeater. 

We have  assumed  that  the  centralized  system is  a  one-hop 
system,  but we  shall  explicitly  treat  the  question of transmis- 
sion  range  in  networks,  since  it  introduces  an  important  trade- 
off: a  short  transmission  range  makes  more  hops  necessary, 
but  reduces  the  interfering  traffic. We shall  see that  choosing 
an  appropriate  range,  as  a  function  of  traffic  characteristics, 
will lead to  the self-adjusting  capability  referred to  in  our  title. 

In  Section I1 we  give a  model  for  the  per-hop  delay  in  net- 
works,  assuming we have  a  model  for  the  delay  in  centralized 
systems  and  that  we  can  calculate  the  total  contending  traffic 
at  any  point. In Section 111 we  use this one-hop  delay  model to 
analyze  the  choice of transmissison  range,  and  demonstrate 
the self-adjusting  capability of random access  networks.  In 
Section IV we introduce  two  ideas  that  help  random  access 
centralized  systems  when  they  are  really  bad,  i.e.,  when  they 
are  very  steady.  These  ideas  contribute  much  less to  random 
access  networks,  because  when  these  can  adjust  they will 
rarely  be  very  steady.  General  conclusions  are given  in  Sec- 
t ion V.  

( S T %  1). 

11. ONE-HOP DELAY IN NETWORKS 
Explicit  and  simple  models  for  delay in random access  com- 

munication  systems  are  rare.  Even if we had  such  models  for 
centralized  systems,  they  are  not  directly  applicable  to  net- 
works.  In  this  section we present  a  model  for  the  one-hop 
delay  in  networks. We assume  that  the  transmission  policy of 
all  terminals  is  chosen to  optimize  the  overall  network  per- 
formance. We also  assume  that our network  covers  a  region 
of space  that  is  large  enough to   make  edge  effects  negligible, 
that  terminals  are  placed  everywhere  with  the  same  density, 
and  that  the  terminal  density is very  high, so we may  make  all 
calculations  as if we had  a  continuum of terminals.  Other 
assumptions  we  adopt  are  as  follows. 

1) ‘The rate of traffic  exchanged  between  any  two  small 
geographic  areas  depends  only  on  the  size of the areas  and  the 
distance  between  them.  The  rate  does  not  depend  on  the 
identity (i.e., location)  of  the  areas  or  the  direction  from  one 
to  the  other.  That is, our  network  is  homogeneous  and  isotro- 
pic  in  its  statistical  properties. 

2) The terminal’s  antenna  is  simple,  and  the  signal  propa- 
gates  equally  in  all  directions. 

3) A  transmission  will  not  be  bothered  by  other  transmis- 
sions  that  are  not  within  range of its  (possibly  intermediate) 
destination,  but will be  destroyed by any  simultaneous  trans- 

mission that  takes  place  within  range of its  destination.  A 
transmission will be  successful  whenever  it  is  the  only  one 
within  range of its  destination.  That is,  we  assume  a  definite 
range,  beyond  which no  interference is  felt.  This  is, of course, 
an  abstraction of the real  world,  in  which  both  successful 
reception  and  destructive  interference  are  probabilistic  events. 

~ Consider,  for  example,  a  network  using  slotted  ALOHA. 
For  simplicity  we  shall  ignore  the  fact  that  the  synchroniza- 
tion  necessary  for  slotted  ALOHA is hard  to  achieve  in  a  net- 
work  with  long-range  transmissions  and  partially  overlapping 
ranges.  Consider  a  given  terminal  with  a  rate of s messages per 
slot  destined  to  another  terminal.  A  transmission will  be suc- 
cessful  only if there is no  other  transmission  with  enough 
range to  interfere  with  it.  Our  terminal will, therefore, have t o  
offer  a  total  traffic of g messages  per  slot  in  order to  succeed 
ab a  rate s, where g includes  retransmissions of previously 
unsuccessful  messages.  Let G be the  total  offered  traffic  per 
slot  heard  at  the  destination.  Assume  that G is  created  by  an 
infinite  population of terminals,  and  that  the  amount  con- 
tributed  to  it  by  every  source-destination  pair is a  Bernoulli 
process  independent of the  traffic  offered  by  any  other  source- 
destination  pair.  Returning  to  our given  terminal,  whose  con- 
tribution  to G is minute, we  must  have s = g c G ,  where e- 
is  simply  the  probability  that  no  other message is transmitted 
in  the  slots  used  by  our  terminal.  Summing  over  all  transmis- 
sions  heard  at  our  destination we  get 

S, = Ge- (2) 

where S ,  denotes  the  total  rate of successful  traffic  heard  at 
our  destination.  This  total  traffic  consists of messages  with 
many  different  destinations,  and  the success of each  mes- 
sage depends  on  what  happens  at  its  destination.  But  all  these 
messages contend  with  our  transmission  for  the  use of the 
channel  around  our  destination. 

Equation ( 2 )  looks  exactly  like  the  equation  describing  a 
centralized  slotted  ALOHA  system [ 161. G and S ,  do  not,  of 
course,  depend  on  the  transmission  in  question,  and we  can 
therefore  say  that  any  transmission  sees  an  ALOHA  system 
at  its  destination  with  a  throughput  equal  to S,, where  the 
subscript  on S ,  stands  for  contending. If we unnormalize S ,  
and  measure  it  in messages  per  unit  time,  we  may  use  (1)  and 
write the average  delay  per  hop  suffered  by  any  message  as 
follows: 

1 

C - eS, 
T=-. ( 3 )  

In  the  centralized  case,  interference  always  destroys  both 
messages  involved. In  the  network case  analyzed  here,  this is 
not necessarily  true.  Since  the  ranges of the  transmission  in- 
volved  and  their  destinations  may  be  very  different,  a  colli- 
sion of two messages at   the first’s  destination will destroy  the 
first,  but  may  not  bother  the  second  at  its  destination. We 
shall  use (3) for   the delay  in  ALOHA  networks,  even  though 
what  happens  at  each  destination is not  equivalent  to  a  closed, 
centralized  ALOHA  system;  this is supported  by [ 171  where 
the  optimal  transmission  policy  for  ALOHA  networks,  given 
the hearing  matrix,  is  shown t o  be identical  to  the  optimal 
policy  in  centralized  ALOHA  systems.  However,  our  goal  here 
is  to  choose  the  optimum  hearing  matrix  by  choosing  the 
transmission  range. 

Equation (3),  as  a  model  for  the  per-hop  delay  in  ALOHA 
networks,  rests  on  two  procedures,  both of which  can  be  ap- 
plied to  random access networks  in  general.  The  first  proce- 
dure is t o  use the  contending  traffic S, and  the  available  capac- 
ity C in the  expression  for  delay  in  the  centralized  system  to 
get  the  per-hop  delay  in  the  network.  This  procedure  was 
first  used  in [ 2 ]  to   model  large networks.  It was presented 



42 IEEE  TRANSACTIONS  ON  COMMUNICATIONS, VOL.  COM-32, NO. 1 ,  JANUARY 1984 

in [ 141  and  evaluated  by  comparing  with  simulation  results 
for  networks  with  10  and 20 nodes.  Evaluating  this  procedure 
for really  large  networks  is  much  harder-there is nothing 
feasible  to  compare  with.  The  second  procedure  is  to  approx- 
imate  the  delay in  a  random  access  system  by  a  simple  two- 
parameter  approximation like'  (1).  If we substitute l /e by the 
maximum  utilization  of  any  centralized  random  access  scheme, 
(3) will then  model  the  per-hop  delay  in  the  corresponding 
random access network. 

The  discussion so far  applies  to  any  network  which is 
homogeneous  and  isotropic in  a  statistical  sense. We shall now 
calculate S, assuming  every  message is transmitted with 
exactly  the  range  necessary  to  reach  its  destination. Let S be 
the  total  traffic  coming  out  of  a  unit  area,  and  let f ( r )  be  the 
traffic  density.  That is, the  traffic  going  from  one  small 
(source)  area d A ,  to  another  small  (destination)  area dAd 
is  given by f(r)dA,dA,,  where r is the  distance  between  the 
two small  areas. We obviously  have S = J,"=0f(r)2nr  dr and 
f (r)2nr/S is  therefore  the  probability  density  function  for  the 
distance  traveled  by  a  message. N ,  the average  distance  traveled 
by messages, is given  by N S  = Jg0 rf(r)2nr dr.  Let dS ,  be  the 
contribution  to S, of messages  whose  range  is  between r and 
r + dr.  Such  a  message  will be heard  at a given  destination if 
it  starts  anywhere  within  a  circle  with  radius r around  that 
destination. We can  then  write dS ,  = nr2f (r )2nr   dr ,  where 
nr2 is the  source  area, 2nr  dr the  destination  area,  and f ( r )  the 
traffic  density.  Integrating  we  get 

m 

sc=  I, - 
nr2 f(r)2rrr  dr = nSN2 

where 3 is the  second  moment  of  the  distance  traveled.  Sub- 
stituting (4) in (3) we  see that  an  ALOHA  network  in  which 
every  message  reaches  its  destination  exactly  in  one  hop  has 
the  same  delay-capacity  relationship  as  a  centralized  ALOHA 
system  carrying  a  total  traffic nSN2 .  

Equation (4) can  also be obtained  directly.  By  symmetry 
S, must  be  equal  to S timesLhe  average  area  in  which  messages 
are  heard,  and  this  area is nN2.  

111. CHOOSING THE RANGE 

The  simplicity of (4)  is  a  result of the  assumption  that 
power  can  be  adjusted  exactly  to  reach  the  destination.  But 
even if we  can  adjust  the  range so as  to  exactly  reach  the des- 
tination  in  one  hop,  is  this  a  good  policy?  In [ 81 the  question 
was  posed  thus:  should  we  take  giant  steps,  assuming  we  can? 
I t  was  shown  there  that  if,  for  a given C and  traffic  require- 
ment,  the  delay  per  hop  grows  without  bound  as  a  function  of 
the  step size R ,  then  there is an  optimal  step  size,  and  steps 
should  not  be  giant. We wish to  find  the  optimal  range  policy 
as  a  function  of  traffic  requirements,  and  for  this  we  need  the 
following. 

Theorem 1 ;  If a  message  has  to  travel  a  distance X in k hops 
it  should,  in  order  to  make  the  best use  of the  communica- 
tion  resources,  do so in k equal  hops,  each  of  length X / k .  

Proof: Whether we  want to  minimize T when S and C 
are given, or  to  minimize  the  necessary C when S and T are 
given,  we must,  in  order  to  get  the  best  system,  minimize  the 
total  contending  traffic  at  each  destination.  But  this is  equiva- 
lent  to  minimizing  the  total  area  at  which  any given  message 
is  heard.  Let X i  be  the  length of the  ith  hop,  where Z X i  = X .  
The  area  in  which  our  message  is  heard  is  proportional  to 
the Z X i 2 .  Minimizing the  area  at  which  our  message  is  heard 
is  therefore  the  following  convex  quadratic  programming 
problem: 

Minimize X i 2  

I R 

Fig. 1. Two bounds on S,, the  total traffic contending at each point. 

subject  to 2 X i  2 X ,  xi 2 0. 

The  solution of this  minimization  problem gives the  equal 
step  result  stated  in  the  theorem. 

Let us now  consider  the  following  family of policies  which 
use  a  perfectly  adjustable  but  limited  transmission  range. 
Given  the  maximum  range R ,  the  path  of  every  message  will 
be  divided  into  the  minimum  number  of  equal  hops.  Which R 
will  give the  best  overall  system  performance?  Should  we  try 
to  make R as  large as  possible? To answer  these  questions  we 
must  determine  how S, depends  on R .  

Writing S, as  a  function  of R and  the  distribution  of  the 
distances  traveled  is  a  straightforward  but  cumbersome  opera- 
tion.  However,  the  following  bounds  are  simple  to  obtain. 
Since S,(R) is  a  monotonic  increasing  function  of R ,  an  ob- 
vious  bound  is S,(R) < S,(m) = nSN2 .  When R is  very  large, 
all  messages will reach  their  destination  in  one  hop, so the 
equality  here  follows  from (4). Another  bound,  especially  use- 
ful  when R is  small,  can  be  obtained  as  follows.  The  total 
area  covered  by  the  several  transmissions  of  a  message  that  has 
to  travel a distance r can  be  bounded  from  above  by ( r / R ) n R 2 .  
In  analogy  to (4), S,(R) can  therefore  be  bounded  by 

nR2f(r)2rrr  dr = rrRNS. ( 5 )  

Fig. 1 shows  the  two  bounds  and  a  hypothetical S,(R).  
We shall  assume  that  the  traffic  to  be  carried  is  specified, 

that  an  acceptable  delay is specified,  and  that  the  goal  of  a 
good design  is to  make  the  necessary  bandwidth  as small  as 
possible.  The  specification  can  be  summarized  by  the  dimen- 
sionless  quantity N 2 S T .  When N 2 S T  < 1  we  call the  network 
and  the  traffic bursty,  and  when N 2 S T  S 1 we  call the  net- 
work steady. 

For small R we  can  use the  bound of ( 5 )  as  an  approxi- 
mation  for S,(R), and we  will combine  it  with N/R as  an  ap- 
proximation  for  the average number of hops  per  message,  to 
get  the  following  approximate  expression  for  the  delay 

N I R  
T =  

C - enSNR 
Inverting  we  get 

1 N  
C = enSNR + - - 

T R  



KLEINROCK AND AKAVIA: SELF-ADJUSTING CAPABILITY 43 

and  from  this 
the  optimal R 
given N ,  S, and 

approximate  expression  for C we  get  that R*, 
(i.e., the  R that  minimizes  the  necessary C for  
T), is given  by 

While  we  use  the  term  optimal R ,  (7) actually  determines  the 
optimal  value  for  the  maximum  transmission  range.  Given  the 
distance  a  specific  message  has to travel, R* determines the 
necessary  number  of  hops,  and  the  transmission  range  of 
all  hops is then  chosen  according to Theorem 1. The  capacity 
necessary  when  using  the  optimal R can  be  obtained  from  (6) 
with  the  use of (7);  it is  given by  the  following  relation be- 
tween CT and N 2 S T ,  both  of  which  are  dimensionless  quan- 
tities: 

CT = 2 4 m .  

When  the  traffic is very  steady (Le., when P S T  % I ) ,  (7) 
says  that R* will be  much  smaller  than N .  The  approxima- 
tions  made  when  writing  (6)  are  consistent  with  this  result, 
which is also  quite  intuitive.  Consider  a  steady  system  with 
a given S and  a  large T. When  we  are  willing to  tolerate  a 
large T the  number  of  hops  can  be  large,  and  we  can  therefore 
choose  a  small R .  Each message  will then  be  heard  only 
in  a  narrow  strip  along  its  path, so S, will  be  small,  and  the 
necessary  bandwidth will therefore  also  be  small.  When  the 
traffic is very  bursty,  we  get  from (7) that R* is much  larger 
than N .  This is again  very  intuitive-when  the  traffic is bursty 
there is little  contention,  and  therefore,  almost  nothing is 
gained  by  forcing  a  message to  undergo  more  than  one  hop. 
But  the  exact  value given by (7)  is not  meaningful  when 
the  traffic is bursty,  because  the  approximations  used  when 
writing  (6)  are  not valid when R is large. 

A  general  conclusion  that  emerges is that  in  a  random 
access  network  it is better  to  limit  the  transmission  range,  even 
if our  terminals  can  adjust  their  range  exactly  and  have  no 
power  limitation.  This  voluntary  limiting is especially  impor- 
tant  when  the  traffic is very  steady,  and  the  optimal  range 
limit R for  ALOHA  networks is then  given  by  (7). 

How  shall  we  define  the quality of networks?  Clearly  one 
should not  compare  a  network  to  one  huge  centralized  MIMI1 
system  that  carries  all  messages to  one  common  destination 
because  practical  networks  have  an  advantage  over  centralized 
systems:  the  same  capacity  can  be  used  in  different  regions of 
the  network  to  successfully  transmit  different  messages  at 
the  same  time.  That  is,  network  capacity  can  be  spatially 
reused. 

A  common  measure  used  to  characterize  access  schemes is 
the  maximum  utilization  they  can  make  of  the  given  com- 
munication  resources.  This  maximum  utilization is sometimes 
called capacity,  especially  by  authors  whose  variables  are 
normalized  by  the  slot  size,  and  who  therefore  do  not  ex- 
plicitly  mention  the  channel  bandwidth. We use  the  word 
capacity  to  describe  an  amount of communication  resources 
(i.e., the  number of bits  or  messages  that  can  be  transmitted 
per  second),  and  utilization  to  denote  the  useful  fraction  of 
that  capacity. 

The  quality  of  a  very  steady  centralized  system,  as  defined 
by  us [ 2 ] ,  is equal  to  its  maximum  utilization.  But  utiliza- 
tion is not  a  good  measure  for  networks  with  a  continuum of 
terminals  since  utilization  can  be  abritrarily  increased  by 
spatial  reuse, Le., by  limiting  the  transmission  range. 

It  seems  that  every  network  organization  must  address 
the  question of how  to  coordinate  every  transmission  with 
a t  least all the  traffic  that is heard  at  its  destination.  Since 
the  best  possible,  system will coordinate  this  traffic  perfectly, 
we  shall  compare  all  networks  to  the  network  that  uses  the 

same  technology  (i.e.,  omnidirectional  antennas)  but  that 
somehow  achieves  perfect  coordination  between  the  traffic 
contending  at  every  point,  and  in  which  transmission  ranges 
are  chosen  optimally. We shall  call  this  “best  possible”  net- 
work  with  perfect  coordination  the  M/M/l  network,  and 
shall  define  the  quality Q of any  network  to  be  the  inverse 
ratio  between  the  capacity  necessary  for  it  when S and T 
are given and  the  capacity  necessary  in  the  M/M/l  network 
for  the  same S and T.  In  general Q < 1,  and  equality  holds 
only  for  the  M/M/l  network  itself.  The  capacity  necessary 
for this  best  possible  M/M/l  network  scheme is in  general 
a  function of S, T ,  and  the  distribution of distances  traveled. 
For  very  steady  traffic  we  get,  in  analogy to (7),  that  the 
optimal R is  given by 

R* 1 _ -  
N - d m  

and  when  using  this R*, the  capacity  necessary is 

CT = 2 4 ~ -  

Dividing (10)  by (8) we  get  that  the  quality of a heavily loaded 
ALOHA  network  with  the  optimal  step size is l/&= 0.607! 
How  did  we  get  this  dramatic  improvement  over  the heavily 
loaded  centralized  ALOHA  system,  whose  quality is l / e  = 
0.367? 

We may  say  that  every  message  sees  at  its  destination  an 
ALOHA  system  whose  utilization,  which  we  shall  call  local 
utilization, is S,/C. When  the  traffic is very  steady  and  when 
the  optimal R is used,  we  get  by  substituting ( 7 )  in (5)  that 
the  centralized  local  utilization is 1/2e, i.e, half the  maximum 
possible  utilization  of  a  centralized  ALOHA  system.  The 
quality of a centralized  ALOHA  system  with  utilization 
1/2e is 0.68. It is only  at  much  higher  utilizations  (closer  to 
I/e)  that  the  quality  of  a  centralized  ALOHA  system  goes 
dowwto  l le.   The  need  for several  hops will bring  the  quality 
of  the  ALOHA  network  down,  from  0.68  to  0.607. We see, 
therefore,  that  by  choosing  the  optimal R as a  function  of 
burstiness,  our  ALOHA  network  has  gained  a  self-adjusting 
capability,  and  it  will  not  allow itself to  be  pushed  to  higher 
loads,  where  it is really  bad. 

Results  analogous t o  (8) can  be  obtained  for  any  random 
access  network,  and  the  self-adjusting  capability is common 
t o  all of them:  the  quality of the  very  steady  random  access 
network  with  the  optimal R is the  square  root of the  quality 
of  the  corresponding  very  steady centralized system.  From 
(8) we  also  see  that  random  access  networks  with  the  optimal 
R show  an  economy of scale  when  very  steady:  for  a given T ,  
the  necessary C grows  only  like 6 

Comparing  (7)  and (9 )  we  see  that  the  optimal  transmission 
radius R in  a  steady  ALOHA  network is smaller  than  the 
optimal R in  an  M/M/l  network  by  a  factor 1 1 6  The  optimal 
R in  both  networks  goes  to  zero as the  traffic  becomes  very 
steady. We have  implicitly  assumed  that  there  always is a 
terminal  at  the  end of the  hop  that  can  receive  our  message 
and  forward  it.  But if R becomes  too  small,  there  may  not 
be  a  terminal so conveniently  situated.  If R becomes  even 
smaller,  our  terminal  may  not  be  able  to  communicate  with 
any  other  terminal,  and  the  network  may  become  discon- 
nected.  Kleinrock  and  Silvester [ 11 1 treat  this  issue  explicitly, 
while  calculating  the  optimum  transmission  range  with  a  dif- 
ferent  objective:  obtaining  the  maximum  throughput  from 
the  given  channel,  assuming  infinite  delay is acceptable. We 
shall  not  treat  this  issue  here,  but  our  assertion  about  the  self- 
adjusting  capability  of  networks  must  be  qualified. 

Consider  once  again  an  ALOHA  network  and  an  M/M/l 
network,  both  carrying  the  same  very  steady  traffic.  If  it is 
practical  for  the  ALOHA  network  to  choose  the  optimal 
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THE  ALOHA NETWORK CAN, BY CHOOSING A 
TRANSMISSION  RANGE  THAT IS SMALLER THAN 
THE RANGE OPTIMAL FOR THF MIMI1 NETWORK, 
MAKE ITS REOUIRED CAPACITY : :ILY & TIMES 
LARGER THAN  THAT OF THE k!M/l  NETWORK / 

/ ALOHA NETWORK 

M / M / 1  NETWORK 

/ 

1 x 
TRANSMISSION  RADIUS ( R )  

Fig. 2. Capacity necessary for very steady two-dimensional networks. 

R according t o  (7), then  i t  will need  only  &times  more 
capacity  than  the  optimal  M/M/l  network,  i.e.,  its  quality 
will  be l/* But if R cannot  be  made so small,  the  quality 
of  the  ALOHA  network will go  down.  If  the  ALOHA  network 
is  constrained  to  use  the  same R as  the  optimal M/M/1 net- 
work,  then  its  local  utilization  will  be  l/(e + 1)  = 0.269 and 
its  quality  will  be 2 / ( e  i- 1) = 0.538. If both  the  ALOHA 
and  the  M/M/l  networks  carry  a  very  steady  traffic  but  are 
constrained  to  use  an R that is much  larger  than  the  one given 
by ( 9 ) ,  then  the  local  utilization of the  ALOHA  network  and 
its  quality  will  be  l/e. 

Fig. 2 sketches  the  dependence of the  necessary  capacity 
on  the  transmission  range,  in  the  ALOHA  and  M/M/1  net- 
works . 

Our  treatment of random  access  networks  can  be  sum- 
marized as follows. 

Theorem 2: Consider  a  network  carrying  a  very  steady 
traffic  and  using  a  random  access  scheme  whose  maximum 
utilization,  when  used  in  a  centralized  communication  system, 
is u. 

Assume  that  the  range of every  transmission  can  be  per- 
fectly  adjusted,  but  only  up  to  a  maximum  range R .  If R can 
be  optimized  freely  (i.e.,  made  as  small  as  necessary),  then 
each  transmission  will  see  a  system  whose local utilization 
is u / 2  and  he network quality will be  6 

, Proof: Follows  trivially  from  the  preceding  discussion. 
Theorem 2 can  be  immediately  generalized  to  the  situation 

in  which  the  antenna  carried  by  terminals is somewhat  direc- 
tional.  Assume  the  antenna  radiates  into  a  cone,  which  takes 
a  fraction (Y of the  sphere.  This  is, of course, a gross  simplifi- 
cation of the  real  radiation  pattern,  but is consistent  with 
our  simple  modeling of transmission  range.  If  we  compare 
the  case of an  omnidirectional  antenna  to  this  case of an a- 
directional  antenna  we  find  that,  with  any  transmission 
policy,  the  total  interfering  traffic  at  any  point is smaller 
by  a  factor a. The  optimal R for  steady  traffic, given by ( 1  3 ) ,  
will become  larger  by 1 1 6  (we  shall  not  have to push so 
much  towards  small R ) ,  and  the  necessary  capacity  of  (14) 
will  become  smaller  by fi But  when  we  compare  an a- 
directional  random  access  network to an  a-directional  M/M/I 
network  we  find  that  the  local  utilization  and  the  network 
quality  in  the  optimized  structure  will  remain  as  stated  in 
Theorem 2 .  An improved  technology  (i.e.,  directionality) 

will help both  the  random  access  network  and  the M/M/1 
network.  But  whenever  they  use  the  same  technology,  a 
comparison  between  them  will  show  the  inherent  cost  due 
to the  random  access  aspect  of  the  network,  and  this  inherent 
cost is 1 1 6 ,  

Until  now  we  have  assumed  the  networks  consist of many 
terminals  distributed  uniformly  in  the  plane,  Theorem 2 can 
be easily  generalized [3] to networks  consisting  of  terminals 
distributed  in  more  than  two  dimensions. 

Somewhat  surprisingly,  Theorem 2 is not valid for  one- 
dimensional  networks  whose  terminals  are  distributed  in  one 
dimension,  for  example,  along  a  coastline.  In  that  case  we 
get  the  following. 

Theorem 3: In  a  one-dimensional  network S, is equal  to 
2 N S ,  and is independent  both  of  the  need  to  break  message 
paths  into  several  hops  and of the  policy of implementing 
such  a  break,  as  long  as  the  policy is applied  everywhere  in 
the  same  way,  that is, as  long  as  a message path of a given 
length will be  broken  in  the  same  way,  wherever  it  originates. 

Proof: Given  in [ 3 ] . 
In  one-dimensional  networks, if range  can  be  erfectly 

adjusted  we  should,  therefore,  take  a  giant  step is !kenever 
possible.  Even  when  the  traffic is very  steady  th,-.-: is n o  
reason t o  limit  the  step  size,  since  no  decrease i,; S, will 
follow.  One-dimensional  ALOHA  networks  have  a  lccal  utili- 
zation  and  a  network  quality  both  of  which  are  equal  to  l/e. 
In  the  rest of this  paper  we  shall  consider  only  two-dimen- 
sional  networks. 

Theorem 2 answers  the  question  of  the  optimal  transmis- 
sion  range  when  the  traffic is very  steady.  This is satisfying 
because  random  access  schemes have an  efficiency  problem 
exactly  when  the  traffic is steady.  When  the  traffic is bursty, 
there is little  need  for  improving  random  access  networks. 
When  range is perfectly  adjusted,  the  range  limit R grows 
when  the  traffic  becomes  bursty,  and  when  the  traffic is 
very  bursty,  giant  stepping is the  best.  That  is,  each  message 
should  be  transmitted  with  enough  range  to  reach  its  destina- 
tion  directly  (in one hop).  These  general  conclusions  change, 
once  we  consider  networks  in  which  range  cannot be per- 
fectly  adjusted. 

Assume  now  that  terminals  cannot  adjust  the  range  of 
their  transmissions,  and  that  all  transmissions,  by all terminals, 
must  have  a  fixed  range R .  Since  the  range  of all transmis- 
sions is fixed  and  constant,  some  messages  will  overshoot 
their  destinations.  The  amount  of  traffic  contending  at  every 
point will therefore  be  larger  now  than it was  when  range 
was perfectly  adjusted.  When  the  traffic is very  steady, R 
will  be  very  small,  and  the  overshoot  will  not  contribute  any- 
thing  significant  to S,. Theorem 2 will therefore  be valid 
even if all transmissions  must  use  the  predetermined  range 
[ 3 ] .  When  the  traffic is bursty, S, will grow  significantly 
when  all  transmissions  have  a  fixed  range,  and R will then  have 
to  be  limited. 

To summarize  this  section:  when  considering  centralized 
systems  we  can  say  that  random  access  schemes  are  good 
when  the  traffic is bursty  and  bad  when  the  traffic is steady. 
This  statement is true  in  general  for  networks, too. But  net- 
works  have  a  self-adjusting  property-by  controlling  the  maxi- 
mum  transmission  range  and  reducing  it  when  the  traffic 
is steady,  we  can  make  random  access  networks  suffer less 
from  destructive  interference  than  centralized  systems. 

IV, IMPROVING ALOHA NETWORKS 

In  this  section  we  shall  consider  two  ideas  that  can  improve 
random  access  communication  systems  by  making  them less 
random,  in  a  sense.  These  ideas-dividing  terminals  into  power 
groups  and  creating  a  multilevel  hierarchical  organization- 
are  in  principle  applicable  to  every  random  access  scheme, 
but  we  shall  analyze  only  their  effect on ALOHA. 
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In  the  models of ALOHA  systems  presented so far,  we 
assumed  that  in  the  case of interference,  both messages  will 
be destroyed.  But if the colliding  messages  vary  greatly in 
received  power,  the  receiver  may  be  able to receive  the 
stronger  one  correctly even in  the  presence of the  other, 
weaker,  signal.  The  receiver  is  then  said to capture  the  stronger 
signal.  The  capability to  capture  some messages  will  obviously 
improve  every  ALOHA  system.  Let US first  see  the  resulting 
improvement  in  a  centralized  ALOHA  system,  where all 
messages  have one  common  destination.  Roberts [ 6 ]  proposed 
and  analyzed  a  capture  model  in  which  the  power  differences 
resulted  from  different  distances  to  the  common  destinations. 
Our approach is different. We shall  assume  that  the  terminal 
population is split  into  two  groups,  that  one  group is transmit- 
ting  with  more  power  than  the  other,  and  that  this  splitting 
is  purposely  done  in  order  to  improve  system  performance. 
In  order to abstract  the  geometric  details  out of the  model, 
we  shall  adopt  the  following  assumption [ I S ] .  The  power  of 
the  two  groups is  significantly  different.  When  two  transmis- 
sions  from  the  same  group  occur  simultaneously,  they will 
always  destroy  each  other.  When  one  strong  transmission  and 
any  number of weak  transmissions  compete  for  the  ear of the 
common  station,  the  strong  one will always  be  captured  suc- 
cessfully.  This  separation  into  groups  introduces,  therefore, 
a  partial  coordination  into  the  random  world of ALOHA. 

It   may  be possible t o  achieve  such  a  coordination  between 
groups  by  techniques  that  do  not  rely  on  a  power  difference 
between  them.  A  distinctive  preamble,  for  example,  may 
allow  a  terminal  to  successfully  receive  a  transmission  from 
one  group,  which we  shall  call strong, even  in the  presence 
of transmissions  from  theweak  group.  In  a  system  which is not 
perfectly  slotted,  the  first  of  two  interfering signals of  equal 
strength  to arrive at  a  receiver  may survive the  collision  and  be 
successfully  received.  From  now  on,  strong  and  weak  should 
not  therefore be taken  literally-they do   no t  necessarily  refer 
to transmission  power,  but  simply  characterize  the  group 
of transmissions  likely t o  win or lose  when  competing  with 
the  other  group. 

What will  be the  resulting  improvement if we  introduce 
groups  into  a  heavily  loaded  ALOHA  centralized  system? 
If the  strong  group is  selfish i t  can  ignore  the  weak  group, 
and  use  the  channel as much as possible. The  strong  group 
will then  successfully  utilize  1/e = 0.367 of the  slots,  and will 
leave l / e  of the  slots  free.  (In  addition, 0.276 of the  slots 
will  be  wasted  on  collisions.)  The  weak  group  can  utilize 
at  most l / e  of what  is  left  free  for  it, i.e., it can  utilize l/e2 = 
0.135 of the  slots,  and  the  total  rate of success  by  both 
groups will be 0.503. 

The  channel  can  be  better  utilized if the  strong  group  will 
not  be so selfish.  To  see  this,  let us now  consider  the division 
into  groups as  a  design parameter.  Assume  that  we have an 
infinite  population of terminals,  and  that  each  terminal 
contributes  only  a  minute  fraction of the  total  traffic. While 
we  have  spoken of strong  and  weak  terminals,  the  important 
design question is not  the  identity of terminals  in  each  group 
but  the  portion of the  traffic in each  group. If we  have  an 
extremely heavy load,  our  goal is to  find  the division into 
groups  that will allow our system  to  utilize  the  greatest  por- 
tion of the  communication  resource  available.  Let G I  and SI 
be  the  total  offered  traffic  and  the  rate  of  success of the  strong 
group, G2 and S2 the  corresponding values for  the  weak 
group.  For  simplicity  we  shall  assume  in  this  section  that S 
and G are  measured  per  slot  size.  Using  our  standard  assump- 
tion,  that  the  total  traffic  offered  by  a  terminal is a  Bernoulli 
process,  independent  of  the  traffic  offered  by  all  other  termi- 
nals,  we  can  write 

S, = ~ , e - ~ 1  

S, = G2e-G2e-Gl .   (1   1 )  
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Fig. 3.  Maximum utilization of ALOHA with power-groups. 

Choosing G I  and G2 in order to maximize S = SI + S2 
we  find  that   the 'best  values  are Gl  = 1 - l /e   and G2 = 1 ,  
that  the  maximum  utilization of a  system  with  two  groups 
is e - ( I - l f e )  = 0.531,  and  that  this  utilization is  achieved 
when S1/S2 = e - 1 .  The  above  treatment  can be  generalized 
to  many  groups. 

Theorem 4: Consider  a  slotted  ALOHA  system  whose 
infinite  population of terminals is optimally  divided  into 
r progressively  weaker  groups,  such  that  a  message will never 
be  bothered  by  transmissions  from  weaker  groups,  and will 
always  be  destroyed  by  any  transmission  from  its  own  group, 
or from  a  stronger  group.  Then V,, the  maximum  utilization 
of this  r-group  ALOHA  system,  satisfies  the  following  recur- 
sion  relation: 

Proof: Follows  directly  from  the  generalization of (1 1 ) .  
See [3]. 

The  sequence V,., whose  first  portion is shown  in  Fig. 3,  
is  a  monotonic  increasing  sequence  converging  (slowly!) t o  
1. This is not  surprising,  since  when  we  have  a large number 
of groups,  most  collisions will be  between  messages  from  dif- 
ferent  groups,  and  one of the messages  will  be  successful, 

Until  now  we  have  applied  the  idea of partially  coordinated 
groups (i.e., power  groups)  to  centralized  ALOHA  systems. 
How  can it be  applied to  networks?  In  our  analysis of ALOHA 
networks we  have  used  the  transmission  power to  control 
range. We shall  now  assume  that  the division into  groups is 
done by means  which  are  independent of power so that  trans- 
mission  range  can  still  be  freely  chosen. We shall  also  assume 
that  the  policy  of assigning  transmission  power is independent 
of  position,  and  that  the  density of both  strong  and  weak 
sources  is  high  and  uniform. 

One  simple  way  to  improve  ALOHA  networks  by  using 
groups is the  following.  The  same  transmission  range will 
be  chosen  for  both  strong  and  weak  transmissions,  and  the 
partial  coordination  between  them will  simply  improve  the 
local  ALOHA  system. We saw that  the  maximum  local  utiliza- 
tion  of  a  two-group  ALOHA  system is 0.53 1.  Substituting  this 
in (8) we  see  that  by  using  two  groups  with  the  same  range, 
the  quality of ALOHA  networks  can  be  improved  from 
d m =  0.607 t o  = 0.729.  We see  that  since  net- 
works  are less sensitive  than  centralized  systems  to  the  limited 
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utilization of the ALOHA scheme,  it is harder  to  improve 
them  by  introducing  a  better  scheme. 

The  capability  to  divide  terminals  into  two  partially  coordi- 
nated  groups  can  lead  to  a  greater  improvement  of ALOHA 
networks  (in  two  or  more  dimensions) if transmission  range is 
chosen  independently  for  the  two  groups.  Let N l  and N 2  
be  the  average  distance  traveled  by messages from  the  strong 
and  weak  group,  respectively.  Let S 1  and S2 be the  traffic 
density of the  strong  and  weak  group,  and  let T1 and T2 
be  the  average  delay  suffered  by messages from  the  strong 
and  weak  group,  respectively.  In  a heavily loaded  system, 
if the  strong  group is absolutely  selfish  it  will  utilize  the 
full  channel  in  the  way  best  for  it,  and  we  then  get  from (8) 
that T1 and SI satisfy 

N12Sl  
T l  = 4en 7 . 

C 

The  local  utilization of the  strong  group,  when  optimized 
for  heavy  traffic, is 1/2e.  It  is  easy  to  calculate  that  the  strong 
group leaves then  a  fraction b = 0.793 of the  time  slots 
unused,  and  these  slots  are  available  for  the  weak  group. 
That is, the  capacity  available  to  the  weak  group is bC. Using 
(8) we  get  that 

N2 2s2 T ,  = 4en- . 
b 2 C 2  

T,  the  message  delay  averaged  over  all  messages,  from both 
groups, is given by TS = T I S l  f T2S2, and  our  goal is t o  
minimize T by  choosing N1, N 2 ,  SI, and S2 subject  to S1 f 
S2 = S and  subject  to N I S l  f N2S2 = N S .  I t  is simple  to 
see  that T is minimized  when N,S1/NzS2 = l /b2  = 1.59 
and is then given by 

e N~ 
T = 4 n -  -S. 

14- b2 C 2  
(1 2) 

The  quality of this  two-group  network  is  therefore 
d m / e  = 0.774. 

It is interesting  to  note  that ( T l / T 2 )  = ( N l / N z )  but  that 
( S 1 T 1 / S 2 T 2 )  = (1/b2)  = 1.59.  That  is,  we  can  choose  the 
ratio  between T 1  and T2 at  will  (by  adjusting N l / N 2 )  but  
the  contribution of the  strong  and  weak  group  to  the  average 
delay  and  to  the  average  number  of  messages  in  the  network 
will  always,  in  an  optimized  system,  be  in  a  fixed  ratio. 

In deriving (12)  we  assumed  the  strong  group is selfish. 
In  [3]  we  show  that  the very  steady  two-group ALOHA 
network  will  be  slightly  better if the  strong  group is not 
absolutely  selfish.  For  a  summary  of  the  optimal  range  and 
the  necessary  capacity  in  various  two-dimensional  networks, 
see  Table I. 

A random  access  communication  system  carrying  a given 
amount of traffic  generated  by  few  terminals will perform 
better  than  a  system  carrying  the  same  traffic  generated  by 
many  terminals.  The  reason is that   two messages  generated 
by  the  same  terminal  will  never  collide. A system  with  fewer 
terminals will therefore  have to  suffer less contention.  For 
example,  Abramson [ 1 ] showed  that  while  the  maximum 
utilization of “infinite  population” ALOHA is l / e ,   t he  maxi- 
mum  utilization of an ALOHA system  consisting  of  a  station 
and  two  terminals is 1/2. 

Since  random  access  systems  with  a  small  population  have 
better  utilization  and  smaller  delay  than  systems  with a large 
population,  one is led to  the  following  hierarchical  scheme 
for  a  centralized  communication  system.  Divide  the  very 
large  terminal  population  into  a  small  number  of  groups. 
Assign a  repeater to each  terminal  group.  Each  group will 

TABLE I 
BEST TRANSMISSION  RANGE AND NEEDED  CAPACITY 

FOR NETWORKS 

Organization Range  Capacity 

M”I 
ALOHA (one group) 
ALOHA (two groups, same  range) 

Ro CO 
0.607Ro 1.647Co 
0.729Rn 1.372Cn . - -  

ALOHA (two groups, separate ranges) considerate 
selfish 0.774RO 1.292Ci 

0.782Ro 1.279Co 

communicate  with  its  repeater,  and  the  repeaters will com- 
municate  with  the  station, All communications  will  use  the 
full  capacity  of  the  channel.  Repeaters  may  sometimes  be 
necessary  in  order to extend  the  range  of  transmission,  but 
we  shall  assume  this is not  a  problem,  and  shall  only  be  inter- 
ested  in  introducing  repeaters  in  order to improve  system 
performance,  that is, t o  lessen the  delay  when S and C are 
given,  or  lessen  the  capacity  necessary  when S and T are 
given.  In [3]  we  show  that  such  a two-level  centralized  system 
based o n  ALOHA will  be  better  than  the  one-level ALOHA 
when  heavily  loaded.  When  very  heavily  loaded  three levels 
will be  even  better,  but  more  than  three ALOHA levels  are 
never  necessary. 

Multilevel ALOHA centralized  systems  can  be  better  than 
one-level ALOHA when  the  traffic is heavy,  because  in  the 
top level  we  can  have a contention  system  with  a  small  popula- 
tion,  which  can  better  utilize  its  communication  resources. 
In  [31  we  show  that  such  a  multilevel  organization  will  never 
improve ALOHA networks.  In  heavily  loaded ALOHA net- 
works  the  optimal  transmission  radius is small.  That  is,  even 
without  repeaters,  whenever  the  traffic is steady  we  should 
make  our  contending  terminal  system  as  small  and  as  finite 
as  we  dare!  Repeaters  .are  not  necessary  for  improving  the 
utilization of heavily  loaded  networks,  and  the  extra  level 
they introduce is wasteful.  Repeaters  can be very  useful,  for 
networks of intermediate  burstiness, if ALOHA is used for  
terminal-repeater  communication  and  dedicated  channels  are 
used  for  repeater-repeater  communication. For a  treatment 
of  such  mixed-mode  networks  see  [41. 

In  this  section  we  have  considered  two  ideas  that  can  im- 
prove  random  access  schemes:  power  groups  and  multilevel 
hierarchical  organization. We have  treated ALOHA in  detail, 
but  the  conclusions  are  general  and  intuitive.  Heavily  loaded 
centralized  systems  must  carry  all  traffic to the  common 
destination.  But  networks  can  adjust,  by  choosing  the  trans- 
mission  range,  and  make  sure  the  channel i s  not  very  heavily 
loaded  at  any  point.  Schemes,  like  power  groups,  that  improve 
centralized  systems  by  a  certain  factor will improve  networks 
by  the  square  root  of  that  factor,  a less significant  improve- 
ment.  Schemes,  like  a  hierarchy of levels,  that  improve  cen- 
tralized  systems  only  when  they  are  heavily  loaded  will not 
improve  networks  at  all,  because  networks  will  never  be  that 
heavily  loaded. 

V. CONCLUSIONS 
Using  a  random  access  scheme  for  a  communication  system 

consisting of a  large  number  of  distributed  terminals is ex- 
tremely  simple  and  therefore  appealing.  But  for  example, 
a  heavily  loaded centralized ALOHA system,  in  which  all 
messages  must  reach  one  common  destination,  will  need e 
times  more  bandwidth  than  the  theoretical  best  (and  impos- 
sible!) M / M / l .  

Random  access networks are in a  better  position.  Since 
messages  have  various  distributed  destinations  the  channel  can 
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be  spatially  reused: i.e., various  transmissions  can  success- 
fully  use  the  channel  at  the  same  time if they  are  separated 
spatially  and do  not  interfere  at  their  destinations.  The  conten- 
tion  between messages  is not  directly  determined  by  the given 
traffic,  and  it  can  be  adjusted  by  choosing  the  transmission 
range. 

By modeling a homogeneous  and  isotropic  network  by a 
continuum of terminals,  we  calculated  the  optimal  transmis- 
sion  range. An  ALOHA  network  need  be  only fi times  worse 
than  the  corresponding M/M/1 network,  even  when  very 
heavily  loaded,  as  long  as  the  calculated  optimal  range is not  
too small  to.  be  practical.  The  calculated  range  becomes too 
small  when  only a few  terminals  are  within  range of each 
other.  But  the  problem of organizing  and  coordinating a sys- 
tem  with a large  number  of  terminals,  which was the  original 
motivation  for  using  random  access, has disappeared,  and 
other  access  modes  can  then  be  used t o  advantage,  although 
we  have  not  considered  any  in  this  paper. 

Since  networks  pay a smaller  price  for  contention  than 
do  the  centralized  systems,  it is harder to improve  them  by 
reducing  contention.  Splitting  terminals  into  power  groups 
can  improve  any  random  access  system,  especially  when  the 
traffic is split  between  groups  in a good  way,  but  the  result- 
ing  improvement  in  centralized  systems is much  more  signifi- 
cant  than  the  resulting  improvement  in  networks. 

In a centralized  system  all  messages  must  reach  the  station, 
and  must  therefore  contend  for  its  ear. A multilevel  organiza- 
tion  using  ALOHA  at all  levels can  improve  heavily  loaded 
single-destination  systems  by  having  only a small  number of 
intermediate  nodes  communicate  directly  with  the  station. 
Multilevel  ALOHA  organizations do  not  help  networks,  be- 
cause  choosing  the  transmission  range is  a much  more  effective 
means  for  controlling  the  amount of contention. 
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